Maximum Norm Error Estimates for Difference Schemes for Fully Nonlinear Parabolic Equations

نویسنده

  • ADAM M. OBERMAN
چکیده

This article establishes error bounds for finite difference schemes for fully nonlinear parabolic Partial Differential Equations (PDEs). For classical solutions the global error is bounded by a known constant times the truncation error of the exact solution. As a corollary, this gives a convergence rate of 1 or 2 for first or second order accurate schemes, respectively. Our results also apply for schemes where the local truncation error depends on multiple parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Norm Analysis of Implicit–explicit Backward Difference Formulae for Nonlinear Parabolic Equations

We establish optimal order a priori error estimates for implicit– explicit BDF methods for abstract semilinear parabolic equations with timedependent operators in a complex Banach space setting, under a sharp condition on the non-self-adjointness of the linear operator. Our approach relies on the discrete maximal parabolic regularity of implicit BDF schemes for autonomous linear parabolic equat...

متن کامل

Convergence and Stability of Explicit/implicit Schemes for Parabolic Equations with Discontinuous Coefficients

In this paper an explicit/implicit schemes for parabolic equations with discontinuous coefficients is analyzed. We show that the error of the solution in L∞ norm and the error of the discrete flux in L2 norm are in order O(τ + h2) and O(τ + h 3 2 ), respectively and the scheme is stable under some weaker conditions, while the difference scheme has the truncation error O(1) at the neighboring po...

متن کامل

Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations

We analyze fully implicit and linearly implicit backward difference formula (BDF) methods for quasilinear parabolic equations, without making any assumptions on the growth or decay of the coefficient functions. We combine maximal parabolic regularity and energy estimates to derive optimal-order error bounds for the time-discrete approximation to the solution and its gradient in the maximum norm...

متن کامل

Difference-Quadrature Schemes for Nonlinear Degenerate Parabolic Integro-PDE

We derive and analyze monotone difference-quadrature schemes for Bellman equations of controlled Lévy (jump-diffusion) processes. These equations are fully non-linear, degenerate parabolic integro-PDEs interpreted in the sense of viscosity solutions. We propose new “direct” discretizations of the non-local part of the equation that give rise to monotone schemes capable of handling singular Lévy...

متن کامل

ar X iv : 0 90 6 . 14 58 v 1 [ m at h . A P ] 8 J un 2 00 9 DIFFERENCE - QUADRATURE SCHEMES FOR NONLINEAR DEGENERATE PARABOLIC INTEGRO - PDE

We derive and analyze monotone difference-quadrature schemes for Bellman equations of controlled Lévy (jump-diffusion) processes. These equations are fully non-linear, degenerate parabolic integro-PDEs interpreted in the sense of viscosity solutions. We propose new “direct” discretizations of the non-local part of the equation that give rise to monotone schemes capable of handling singular Lévy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008